Calculation of Carbon Footprint Values for masonry walls constructed using Wi System and HBP blocks compared with traditional windposts, traditional precast concrete lintels, and standard blocks

[^0]Wembley Innovation Report
Reference: A27150-001
Version 2.5
$7^{\text {th }}$ September 2023


Professor John Orr

## Table of Contents

1 Introduction ..... 3
2 Methodology ..... 3
3 Embodied carbon calculation: Type 1 ..... 4
3.1 Inputs ..... 4
3.2 Calculation ..... 13
3.3 Results ..... 13
4 Embodied carbon calculation: Type 2 ..... 14
4.1 Inputs ..... 14
4.2 Calculation ..... 21
4.3 Results ..... 21
5 Analysis and Discussion ..... 22
5.1 Electricity supply ..... 22
5.2 Comparison between Wi System and TWP - Type 1 ..... 23
5.3 Comparison between Wi System and TWP - Type 2 ..... 24

## 1 Introduction

This report provides:

1. Embodied carbon calculations for Type $1(9 \times 4 m)$ wall panels constructed with a) traditional wind posts and traditional concrete lintel and b) Wi Columns and Wi Trough lintel.
2. Embodied carbon calculations for Type $2(4 \times 5 \mathrm{~m})$ wall panels constructed with a) traditional wind posts and traditional concrete lintel and b) Wi Beam.
3. Analysis and discussion of the results.

## 2 Methodology

Carbon calculations follow the methodology presented in How to calculate embodied carbon $2^{\text {nd }}$ Edition (IStructE, 2022). The calculation here covers the minimum scope required by that guide, lifecycle Modules A1-A5 (Figure 1), and is based on Eq.(1).


Figure 1: Life cycle modules and stages, following BS EN 15978 (BSI, 2011). Figure © John Orr.

$$
\begin{array}{ll}
E C_{A 15} & =\sum_{i=1}^{n}\left[Q_{i}\left(E C F_{A 13, i}+E C F_{A 4, i}+E C F_{A 5 w, i}\right)\right]+E C_{A 5 a}  \tag{1}\\
\mathrm{EC}_{\mathrm{A} 15} & =\text { total embodied carbon for life cycle Modules A1-A5 }\left(\mathrm{kgCO}_{2} \mathrm{e}\right) \\
\mathrm{Q}_{\mathrm{i}} & =\text { design quantity of } i^{\text {th }} \text { material (kg) } \\
\mathrm{ECF}_{\mathrm{A} 13} & =\text { embodied carbon factor for life cycle Modules A1-A3 }\left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}\right) \\
\mathrm{ECF}_{\mathrm{A} 4, \mathrm{i}} & =\text { transportation to site (Module A4) embodied carbon for the } t^{\text {th }} \text { material }\left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}\right) \\
\mathrm{ECF}_{\mathrm{A} 5 \mathrm{i}, \mathrm{i}} & =\begin{array}{l}
\text { on-site construction waste (Module A5) embodied carbon factor for } i^{\text {th }} \text { material } \\
\\
\text { (kgCO2e/kg) }
\end{array} \\
\mathrm{EC}_{\mathrm{A} 5 \mathrm{a}} & =\text { construction activities emissions (Module A5) }\left(\mathrm{kgCO}_{2} \mathrm{e}\right)
\end{array}
$$

## 3 Embodied carbon calculation: Type 1

### 3.1 Inputs

### 3.1.1 Material quantities

### 3.1.1.1 Type 1 blockwork wall panel ( $9 \times 4 m$ ) with TWPs, concrete lintel, and standard blocks.

Material quantities are taken from a bill of quantities provided by Wembley Innovation Ltd and are given in Table 1. One unit is one $9 \times 4 \mathrm{~m}$ panel, as shown in Figure 2.


Figure 2: Type 1 wall panel designed with TWPs and standard blocks and concrete lintel. Source: Wembley Innovation.

Table 1: Material quantities for Type 1 panel TWPs with standard blocks.

|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 1. | $130 \times 70 \times 6 \mathrm{~mm}$ stainless steel | Stainless steel | 4 nr | $16 \mathrm{~m}(4 \mathrm{~m}$ per TWP) | $\mathbf{1 5 4}$ |
| 2. | Bottom cleat (150x150x6mm) | Stainless steel | 4 nr | 1 nr cleat per WP | $\mathbf{4 . 3 2}$ |
| 3. | Top Cleat (220x70x6mm) | Stainless steel | 4 nr | 1 nr cleat per WP | $\mathbf{2 . 9 6}$ |
| 4. | Fireboard (100x15mm) | Plasterboard | 16 m | Fireboard to exposed TWP | $\mathbf{3 1 . 2 0}$ |
| 5. | Standard 140 mm 7.3 N medium <br> dense solid block | Medium dense <br> solid block | 358 nr | $19 \mathrm{~kg} /$ block | $\mathbf{6 8 0 2 . 0 0}$ |
| 6. | Standard mortar 1:1:6 | Mortar 1:1:6 | $0.313 \mathrm{~m}^{3}$ | 10 mm thick mortar, 2200kg/m ${ }^{3}$ | $\mathbf{6 8 8 . 6 0}$ |
| 7. | 200x20x2.5 frame cramp ties <br> @450c/c spacing | Stainless steel | 88 nr | Both sides of TWP and at end <br> abutments | $\mathbf{7 . 0 4}$ |
| 8. | Stone mineral wool | Stone mineral <br> wool | 40 m | Filler materials either side of each TWP <br> and at end abutments | $\mathbf{4 4 . 0 0}$ |
| 9. | 310ml intumescent acoustic <br> sealant | Sealant | 32 nr <br> tubes | Mastic either side of TWP (3no) and at <br> end abutments, both sides of walls | $\mathbf{1 5 . 6 7}$ |
| 10. | Precast concrete lintel | Precast <br> Concrete <br> Lintel | $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 750 \mathrm{~mm}$ length, <br> $2500 \mathrm{~kg} / \mathrm{m}^{3}$ | $\mathbf{5 6 . 4 4}$ |  |

### 3.1.1.2 Type 1 blockwork wall panel ( $9 x 4 m$ ) with Wi Columns, Wi Trough Lintel, and HBP blocks.

Material quantities are taken from a bill of quantities provided by Wembley Innovation Ltd and are given in Table 2. One unit is one $9 \times 4 \mathrm{~m}$ panel, as shown in Figure 3.


Figure 3: Type 1 wall panel designed with Wi Columns and HBP blocks and Wi Trough Lintel. Source: Wembley Innovation.

Table 2: Material quantities for Type 1 panel Wi System with HBP blocks.

|  | A | B | C |  | G |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 1. | 140mm Wi Column Blocks | Wi System Blocks | 36 nr | $11.4 \mathrm{~kg} / \mathrm{block}$ | 410.40 |
| 2. | Head cleat (430x60x8mm) | Mild Steel | 2 nr | Top of both WiCs | 3.22 |
| 3. | H16 rebar with socket | Rebar | 16m | 4 nr @ 4 m length, $1.58 \mathrm{~kg} / \mathrm{m}$; One socket per bar at 0.24 kg each. | 26.24 |
| 4. | C40 Wi mortar | C40 Wi mortar | 480kg | $8 \mathrm{~m} \times 60 \mathrm{~kg} / \mathrm{m}$ | 480 |
| 5. | HBP 140 mm 7.3 N medium dense slot block | HBP 140 mm 7.3 N medium dense slot block | 322nr | HBP slot block weight $17.8 \mathrm{~kg} / \mathrm{block}$ | 5731.60 |
| 6. | Standard mortar (1:1:6) | Mortar 1:1:6 | $0.264 \mathrm{~m}^{3}$ | 10 mm thick mortar, $2200 \mathrm{~kg} / \mathrm{m}^{3}$ | 580.80 |
| 7. | 200x20x2.5 Frame Cramp ties @ $450 \mathrm{c} / \mathrm{c}$ spacing | Stainless steel | 18 nr | At end abutments | 1.20 |
| 8. | 225x19x3 masonry ties @ 450c/c spacing | Stainless steel | 36 nr | Both sides of WiCs | 3.69 |
| 9. | Stone mineral wool | Stone mineral wool | 12m | Filler material one side of WiC (1 no) and at end abutments | 13.20 |
| 10. | 310 ml intumescent acoustic sealant | Sealant | 12 nr <br> tubes | Mastic to end abutments and one side of 1 nr WiC for MJ, both sides of panel. | 5.88 |


|  | A | B | C |  | G |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 11. | 140 mm Wi Lintel U blocks | Wi System <br> Blocks | 1.5 nr | 750 mm length, $12.4 \mathrm{~kg} / \mathrm{block}$ | $\mathbf{1 8 . 6 0}$ |
| 12. | H16 rebar without socket | Rebar | 1.5 m | $2 \mathrm{nr} @ 750 \mathrm{~mm}$ length, $1.58 \mathrm{~kg} / \mathrm{m}$ | $\mathbf{2 . 3 7}$ |
| 13. | Short transfer rod | Mild steel | 1 nr | 350 g | $\mathbf{0 . 3 5 0}$ |
| 14. | C40 Wi Mortar | C40 Wi Mortar | 17.25 kg | $750 \mathrm{~mm} \times 23 \mathrm{~kg} / \mathrm{m}$ | $\mathbf{1 7 . 2 5}$ |

### 3.1.2 Carbon factors

### 3.1.2.1 Modules A1-A3

### 3.1.2.1.1 Type 1 blockwork wall panel ( $9 \times 4 \mathrm{~m}$ ) with TWPs, concrete lintel, and standard blocks

Table 3: ECF A13 for Type 1 TWP

| Material | ECF $_{\text {A13 }}$ <br> $\mathbf{( k g C O}_{\mathbf{2}}$ /kg) | Source | Comment |
| :--- | :--- | :--- | :--- |
| Stainless steel | 4.407 <br> $($ Range 3.61 - <br> $6.29)$ | ICE V3 | Inventory of Carbon and Energy (ICE) database (Jones, 2019). <br> Average value for stainless steel. <br> Fireboard |
| 7.3N Medium Block | $\mathbf{0 . 3 9 0}$ | ICE V3 | Plasterboard |
| Standard mortar 1:1:6 | $\mathbf{0 . 1 5 2}$ | ICE V3 | Medium density block (generic) |
| Stone mineral wool | $\mathbf{1 . 2 8 0}$ | ICE V3 | Mortar (1:1:6 Cement:Lime:Sand mix) |
| Sealant | $\mathbf{2 . 3 6 6}$ | HTCEC | This value is general use for intumescent paint coatings of <br> concrete from HTCEC (IStructE, 2022). |
| Precast Concrete Lintel | $\mathbf{0 . 1 9 4}$ | Mineral Wool <br> Precast concrete beams and columns, assume 100kg steel per m |  |
| concrete, European EAF recycled stock. |  |  |  |
| For reference and context of this value, an EPD for a UK produced |  |  |  |
| prestressed precast lintel was found by Naylor Concrete (2023) |  |  |  |
| which has an A1-A3 carbon factor of 0.168 kgCO 2 e/kg. The value |  |  |  |
| adopted here can be updated if a specific product EPD is known to |  |  |  |
| be used. |  |  |  |

### 3.1.2.1.2 Type 1 blockwork wall panel ( $9 \times 4 \mathrm{~m}$ ) with Wi Columns, Wi Trough Lintel, and HBP blocks

Table 4: ECF A13 for Type 1 Wi System

| Material | ECF $_{\text {A13 }}$ <br> $\left(\mathbf{k g C O}_{2} \mathrm{e} / \mathrm{kg}\right)$ | Source | Comment |
| :--- | :--- | :--- | :--- |
| Wi System Blocks <br> $(140 \mathrm{~mm}$ Wi Column <br> Block, 140 mm Wi U <br> Blocks $)$ | $\mathbf{0 . 0 9 1 7}$ |  | Provided by Wembley Innovation. |
| Stainless steel | 4.407 <br> Range 3.61 - <br> $6.29)$ | ICE V3 | Inventory of Carbon and Energy (ICE) database Average value for <br> stainless steel. |
| Mild steel | $\mathbf{2 . 4 5 0}$ | HTCEC | This value is for general UK plate, and is recommended here <br> unless the source of the plate is known. |


| Material | ECF $_{\text {A13 }}$ <br> $\left(\mathbf{k g C O}_{2} \mathbf{e} / \mathrm{kg}\right)$ | Source | Comment |
| :--- | :--- | :--- | :--- |
| Reinforcing bar | $\mathbf{0 . 7 6 0}$ | HTCEC | UK sector average. |
| C40 Wi mortar | $\mathbf{0 . 1 7 8}$ |  | Provided by Wembley Innovation. |
| HBP 140mm 7.3N <br> medium dense slot <br> block | $\mathbf{0 . 0 9 3}$ | ICE V3 | Medium density block (generic) |
| Standard mortar (1:1:6) | $\mathbf{0 . 1 5 2}$ | ICE V3 | Mortar (1:1:6 Cement:Lime:Sand mix) |
| Stone mineral wool | $\mathbf{1 . 2 8 0}$ | ICE V3 | Mineral Wool |
| 310ml intumescent <br> acoustic sealant | $\mathbf{2 . 3 6 6}$ | HTCEC | This value is general use for intumescent paint coatings of <br> concrete from HTCEC. |

### 3.1.2.2 Module A4

Module A4 carbon has been calculated using real data from a project in London. Material quantities for a wall area of $8,928 \mathrm{~m}^{2}$ were provided by the client quantity surveyor, along with the number of deliveries required. This is then converted into a carbon factor per $\mathrm{m}^{2}$ of wall for use on both TWP and Wi System wall panels.
Module A4 is calculated using Eq.(2):

$$
\begin{equation*}
E C_{A 4}=\sum_{i=1}^{n}\left(n_{i} \times T D_{\text {mode }, i} \times T E F_{\text {mode }, i}\right) \tag{2}
\end{equation*}
$$

Where $\mathrm{EC}_{\mathrm{A} 4}=$ embodied carbon for transport to site $\left(\mathrm{kgCO}_{2} \mathrm{e}\right)$
$n_{i}=$ number of deliveries for $t^{\text {th }}$ group of materials
$\mathrm{TD}_{\text {mode, }}=$ transport distance for $i^{\text {th }}$ group of materials (km)
$\mathrm{TEF}_{\text {mode }, \mathrm{i}}=$ transport emission factor for $i^{\text {th }}$ group of materials $\left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{km}\right)$
In Table 5 and Table 6, materials listed in column A are grouped in column B by delivery. The number of deliveries is given in column C, and the type of transport in column D. Transport distances are provided in column E. Transport emissions factors from UK Government Greenhouse gas reporting conversion factors (Department for Energy Security and Net Zero, 2023), are provided in column F. Equation (2) is used to provide the results in Column G.

### 3.1.2.2.1 Traditional Wall Panel (blocks, steel windposts, concrete lintels and fireboarding)

Table 5: EC A $_{4}$ for TWP

| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Material | Group | n | Type | $\begin{aligned} & \text { TD }_{\text {mode }} \\ & (k m) \end{aligned}$ | $\begin{aligned} & \mathrm{TEF}_{\text {mode }} \\ & \left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{km}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{EC}_{\mathrm{A} 4,1} \\ & \left(\mathrm{kgCO}_{2} \mathrm{e}\right) \end{aligned}$ |
| $130 \times 70 \times 6 \mathrm{~mm}$ stainless steel | 2 | 3 | Rigid (>3.57.5 tonnes) | 270 | 0.52991 | 429 |
| Bottom cleat(150×150×6mm) | 2 (With windpost) |  |  |  |  |  |
| Top Cleat (220x70x6mm) | 2 (with windpost) |  |  |  |  |  |
| $200 \times 20 \times 2.5$ frame cramp ties @450c/c spacing | 5 (sundry) | 1 | Rigid (>3.5- <br> 7.5 tonnes) | 80 | 0.52991 | 42 |
| Fireboard (100x15mm) | 3 | 2 | Rigid (>3.5- <br> 7.5 tonnes) | 80 | 0.52991 | 85 |


| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Material | Group | n | Type | $\begin{aligned} & \mathrm{TD}_{\text {mode }} \\ & (\mathrm{km}) \end{aligned}$ | $\begin{aligned} & \text { TEF }{ }_{\text {mode }} \\ & \left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{km}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{EC}_{\mathrm{A} 4,1} \\ & \left(\mathrm{kgCO}_{2} \mathrm{e}\right) \end{aligned}$ |
| Standard 140mm 7.3N medium dense solid block | 1 | 75 | $\begin{aligned} & \text { Articulated } \\ & (>3.5-33 t) \end{aligned}$ | 167 | 0.91733 | 11490 |
| Standard mortar 1:1:6 | 6 | 1 | Rigid (>17 tonnes) | 80 | 1.06991 | 86 |
| Stone mineral wool | 5 (sundry) |  |  |  |  |  |
| 310ml intumescent acoustic sealant | 5 (sundry) |  |  |  |  |  |
| Precast concrete lintel | 4 | 20 | Rigid (>3.5- <br> 7.5 tonnes) | 223 | 0.52991 | 2363 |
| Sum ( $\mathrm{kgCO}_{2} \mathrm{e}$ ) per 8,928m ${ }^{2}$ |  |  |  |  |  | 14,495 |
| $\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{m}^{2}$ |  |  |  |  |  | 1.62 |

### 3.1.2.2.2 Type 1 blockwork wall panel ( $9 \times 4 \mathrm{~m}$ ) with TWPs, concrete lintel, and standard blocks

The Type 1 blockwork panel with TWPs, concrete lintel, and standard blocks has an area of $36 \mathrm{~m}^{2}$, and using a carbon factor of $1.62 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{m}^{2}$ from Table 5 this gives a total $\mathrm{EC}_{\mathrm{A} 4}$ of $58.4 \mathrm{kgCO}_{2} \mathrm{e}$.

### 3.1.2.2.3 Wi System Wall Panel (Blocks \& Wi System)

Table 6: EC A4 $^{4}$ for Wi System

| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Material | Group | n | Type | $\begin{aligned} & \mathrm{TD}_{\text {mode }} \\ & (\mathrm{km}) \end{aligned}$ | $\begin{aligned} & \text { TEF } \text { mode } \\ & \left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{km}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{EC}_{\mathrm{A} 4,1} \\ & \left(\mathrm{kgCO}_{2} \mathrm{e}\right) \end{aligned}$ |
| 140mm Wi Column Blocks | 1 | 75 | $\begin{aligned} & \text { Articulated } \\ & (>3.5-33 \mathrm{t}) \end{aligned}$ | 161 | 0.91733 | 11077 |
| Head cleat (430x60x8mm) | $\begin{aligned} & 2 \text { (with Wi } \\ & \text { System) } \end{aligned}$ |  |  |  |  |  |
| 200x20x2.5 Frame Cramp ties @ 450c/c spacing | 3 (sundry) | 1 | Rigid (>3.5- <br> 7.5 tonnes) | 80 | 0.52991 | 42 |
| 225x19x3 masonry ties <br> @ 450c/c spacing | 3 (sundry) |  |  |  |  |  |
| H16 rebar with socket | 2 (with Wi System) |  |  |  |  |  |
| C40 Wi mortar | 2 | 4 | Articulated $(>3.5-33 t)$ | 80 | 0.91733 | 294 |
| HBP 140mm 7.3N medium dense slot block | 1 (with Wi blocks) |  |  |  |  |  |
| Standard mortar (1:1:6) | 4 | 1 | Rigid (>17 <br> tonnes) | 80 | 1.06991 | 86 |
| Stone mineral wool | 3 (sundry) |  |  |  |  |  |
| 310ml intumescent acoustic sealant | 3 (sundry) |  |  |  |  |  |
| 140mm Wi U blocks | 1 (with Wi blocks) |  |  |  |  |  |


| A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Material | Group | n | Type | $\begin{aligned} & \mathrm{TD}_{\text {mode }} \\ & (\mathrm{km}) \end{aligned}$ | $\begin{aligned} & \text { TEF } \text { mode } \\ & \left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{km}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{EC}_{\mathrm{A} 4, \mathrm{I}} \\ & \left(\mathrm{kgCO}_{2} \mathrm{e}\right) \end{aligned}$ |
| H16 rebar without socket | 2 (with Wi System) |  |  |  |  |  |
| Short transfer rod | 2 (with Wi System) |  |  |  |  |  |
| C40 Wi Mortar | 2 (with Wi System) |  |  |  |  |  |
| Sum ( $\mathrm{kgCO}_{2} \mathrm{e}$ ) per 8,928m ${ }^{2}$ |  |  |  |  |  | 11,498 |
| $\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{m}^{2}$ wall |  |  |  |  |  | 1.29 |

3.1.2.2.4 Type 1 blockwork wall panel $(9 \times 4 \mathrm{~m})$ with Wi Columns, Wi Trough Lintel, and HBP blocks

The Type 1 blockwork panel with Wi Columns, Wi Trough Lintel, and HBP blocks has an area of $36 \mathrm{~m}^{2}$, and using a carbon factor of $1.29 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{m}^{2}$ from Table 6 this gives a total $\mathrm{EC}_{\mathrm{A} 4}$ of $46.4 \mathrm{kgCO}_{2} \mathrm{e}$.

### 3.1.2.3 Module A5w carbon factors

A5 carbon factors are divided into A5a (activities on site) and A5w (material wastage). Module A5w is calculated using Eq.(3):

$$
\begin{equation*}
E C F_{A 5 w, i}=W F_{i} \times\left(E C F_{A 13, i}+E C F_{A 4, i}+E C F_{C 2, i}+E C F_{C 34, i}\right) \tag{3}
\end{equation*}
$$

$\mathrm{ECF}_{\text {A5w,i }}=$ construction waste embodied carbon factor for $i^{\text {th }}$ material $W F_{i}=$ waste factor for $t^{\text {th }}$ material
$\mathrm{ECF}_{\mathrm{A} 13, \mathrm{i}}=$ embodied carbon factor for A1-A3 for $i^{\text {th }}$ material
$\mathrm{ECF}_{\mathrm{A} 4, \mathrm{i}}=$ embodied carbon factor for transport to site for $i^{\text {th }}$ delivery
$E C F_{C 2, i}=$ transportation away from site carbon factor calculated in the same way as $\mathrm{ECF}_{\mathrm{A} 4, \text {, }}$ but transport distance is assumed to be 50 km by road if taken for reuse or recycling elsewhere (default assumption from RICS guidance)
$\mathrm{ECF}_{\mathrm{c} 34, \mathrm{i}}=$ waste processing and disposal embodied carbon factor
To calculate Module A5w, Modules C2, C3, and C4 are also required:

- For Module A4, delivery emissions ( ${E C_{A 4} \text { ) are distributed pro-rata by weight between }}_{\text {- }}$ the items in each delivery group and divided by the item weight to give $\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}$.
- For Module C2, transport distances are assumed at 50km (local) by road, and carbon factors are calculated as described in §3.1.2.3.1.
- Modules C3 and C4 are combined in a standard value of ECF $\mathrm{C}_{34, \mathrm{I}}=0.013 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}$ waste (as taken from the HTCEC guide).


### 3.1.2.3.1 Module C2 carbon factors

For Module C2, transport emissions away from site are calculated using Equation (4).
$E C F_{C 2, i}=\sum_{\text {mode }}\left(T D_{\text {mode }} \times T E F_{\text {mode }}\right)$
Where $E C F_{C 2, i}=$ embodied carbon factor for transportation away from site at the end of life for $i^{\text {th }}$ material $\left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}\right)$
$\mathrm{TD}_{\text {mode }}=$ transport distance (km)
$\mathrm{TEF}_{\text {mode }}=$ transport emission factor $\left(\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg} / \mathrm{km}\right)$
TD $_{\text {mode }}$ is taken as 50 km (based on industry guidance (IStructE, 2022)), and TEF $_{\text {mode }}$ is $0.00009696 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}$ (all HGVs, average laden, from 2023 conversion factors).

### 3.1.2.3.2 Type 1 blockwork wall panel ( $9 \times 4 \mathrm{~m}$ ) with TWPs, concrete lintel and standard blocks

Waste rates for each material are required. The waste rate (WR) is defined as a percentage of the quantity of materials brought to the site that are wasted. The values below are taken from baseline values provided in the WRAP Net Waste Tool (WRAP, 2008), HTCEC, or from discussions with Wembley Innovation:
Table 7: WF for Type 1 TWP

| Material | WR | WF | Reference |
| :--- | :--- | :--- | :--- |
| Stainless steel | $1.00 \%$ | 0.010 | HTCEC |
| Fireboard (100x15mm) | $22.50 \%$ | 0.290 | HTCEC |
| Standard 140mm 7.3N medium dense solid block ${ }^{(1)}$ | $5.00 \%$ | 0.053 | WI |
| Standard mortar 1:1:6 | $5.00 \%$ | 0.053 | HTCEC |
| Stone mineral wool ${ }^{(1)}$ | $5.00 \%$ | 0.053 | WI |
| 310ml intumescent acoustic sealant ${ }^{(1)}$ | $3.00 \%$ | WI |  |
| Precast concrete lintel ${ }^{(2)}$ | $0.00 \%$ | 0.000 | WI |

Note 1: WR value based on site experience and discussion with Wembley Innovation.
Note 2: Precast concrete large elements would have a WR of $1 \%$ in HTCEC, $0 \%$ is taken here for these small elements.

Table 8: ECF ${ }_{C 2}$ for Type 1 TWP

| TD $_{\text {mode }}$ | TEF $_{\text {mode }}$ | Mode | ECF $_{\text {c2 }}$ |
| :--- | :--- | :--- | :--- |
| $50^{(1)}$ | 0.00009696 | Road | 0.004848 |

Note 1: ECF ${ }_{\mathrm{C} 2}$ is the transportation away from site carbon factor. This is calculated as described in §3.1.2.3.1 with transport distance is assumed to be 50 km by road if taken for reuse or recycling elsewhere (default assumption from RICS guidance).

Table 9: A5w for Type 1 TWP system

| Material | ECF $_{\text {A13 }}$ | ECF $_{\text {A4 }}$ | ECFC2 | ECF $_{\text {c34 }}$ | WF | ECF $_{\text {A5w }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Stainless steel | 4.407 | 0.0107 | 0.004848 | 0.013 | 0.010 | 0.045 |
| Fireboard | 0.390 | 0.0110 | 0.004848 | 0.013 | 0.290 | 0.122 |
| Standard 140mm <br> 7.3 N medium dense <br> solid block | 0.093 | 0.0068 | 0.004848 | 0.013 | 0.053 | 0.006 |
| Standard mortar <br> $1: 1: 6$ | 0.152 | 0.0005 | 0.004848 | 0.013 | 0.053 | 0.009 |
| Stone mineral wool | 1.280 | 0.0026 | 0.004848 | 0.013 | 0.053 | 0.068 |
| 310ml intumescent <br> acoustic sealant | 2.366 | 0.0026 | 0.004848 | 0.013 | 0.031 | 0.074 |
| Precast concrete <br> lintel | 0.194 | 0.1689 | 0.004848 | 0.013 | 0.00 | 0.000 |

3.1.2.3.3 Type 1 blockwork wall panel $(9 \times 4 \mathrm{~m})$ with Wi Columns, Wi Trough Lintel, and HBP blocks

Waste rates for each material are required. The waste rate (WR) is defined as a percentage of the quantity of materials brought to the site that are wasted.

The construction process for the Wi Trough Lintel system requires temporary works. These would normally be included in Module A5, but in this case we can be certain that the temporary works will be reused in future projects (and have already been reused many times) and therefore are not included in the calculations.

Table 10: WF for Type 1 panel with Wi Columns, Wi Trough Lintel and HBP blocks

| Material | WRwi | WFwi | Reference |
| :--- | :--- | :--- | :--- |
| Wi System Blocks (Wi Columns, Wi Lintel U Blocks) | $5.00 \%$ | 0.053 | WI |
| Stainless steel | $1.00 \%$ | 0.010 | HTCEC |
| Mild Steel | $1.00 \%$ | 0.010 | HTCEC |
| Rebar | $1.00 \%$ | 0.010 | WI |
| C40 Wi mortar | $5.00 \%$ | 0.053 | HTCEC |
| HBP 140mm 7.3N medium dense slot block | $5.00 \%$ | 0.053 | WI |
| Standard mortar (1:1:6) | $5.00 \%$ | 0.053 | HTCEC |
| Stone mineral wool | $5.00 \%$ | 0.053 | Wrap |
| 310ml intumescent acoustic sealant | 0.031 | WI |  |

Table 11: ECF ${ }_{C 2}$ for Type 1 panel with Wi Columns, Wi Trough Lintel and HBP blocks

| TD $_{\text {mode }}$ | TEF mode | Mode | ECFc2 |
| :--- | :--- | :--- | :--- |
| $50^{(1)}$ | 0.00009696 | Road | 0.004848 |

Note 1: $\mathrm{ECF}_{\mathrm{C} 2}$ is the transportation away from site carbon factor. This is calculated as described in §3.1.2.3.1 with transport distance is assumed to be 50 km by road if taken for reuse or recycling elsewhere (default assumption from RICS guidance).

Table 12: A5w for Type 1 panel with Wi Columns, Wi Trough Lintel and HBP blocks, with WFwi from Table 10

| Material | $\mathrm{ECF}_{\text {A13 }}$ | $\mathrm{ECF}_{\text {A4 }}$ | ECFc2 | ECFc34 | WFwi | ECF $_{\text {A5w }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wi System Blocks (Wi Columns, Wi Lintel U Blocks) | 0.0917 | 0.0073 | 0.0048 | 0.013 | 0.053 | 0.0058 |
| Stainless steel | 4.407 | 0.0071 | 0.0048 | 0.013 | 0.010 | 0.0448 |
| Mild Steel | 2.450 | 0.0022 | 0.0048 | 0.013 | 0.010 | 0.0250 |
| H16 rebar | 0.760 | 0.0022 | 0.0048 | 0.013 | 0.010 | 0.0079 |
| C40 Wi mortar | 0.178 | 0.0022 | 0.0048 | 0.013 | 0.053 | 0.0104 |
| HBP 140mm 7.3N medium dense slot block | 0.093 | 0.0073 | 0.0048 | 0.013 | 0.053 | 0.0062 |
| Standard mortar $(1: 1: 6)$ | 0.152 | 0.0006 | 0.0048 | 0.013 | 0.053 | 0.0090 |
| Stone mineral wool | 1.280 | 0.0071 | 0.0048 | 0.013 | 0.053 | 0.0687 |
| 310 ml intumescent acoustic sealant | 2.366 | 0.0071 | 0.0048 | 0.013 | 0.031 | 0.0739 |

### 3.1.3 Module A5a carbon emissions

Module A5a carbon emissions, activities on site, are normally calculated based on the project cost. Whilst this is appropriate for a building analysis, it would be less useful here. In the following, electricity use required for site activities is taken from data provided by Wembley Innovation and given in Table 13.

The carbon emissions factor for this report have been taken from the UK Government Greenhouse gas reporting: conversion factors 2023. The values for electricity generation (Scope 2) and transmission and distribution (Scope 3) are added together to provide a 'electricity consumption' carbon factor, in line with the guidance provided with the conversion factors. This gives an emission factor of 0.207074 (for electricity generation) plus 0.01792 (for transmission and distribution) $=0.225 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kWh}$.

Table 13: A5a emissions for Type 1 with a) TWPs and concrete lintel and b) Wi Columns, Wi Trough Lintel and HBP blocks, per 9x4m unit

|  | Grid electricity | Carbon emission factor <br> $\left(\mathbf{k g C O}_{2} \mathbf{e} / \mathbf{k W h}\right)^{1}$ | Embodied carbon <br> (kgCO2e) |
| :--- | :--- | :--- | :--- |
| (a) TWPs, concrete lintel and <br> standard blocks | 10 kWh | 0.225 | $\mathbf{2 . 2 5 0}$ |
| (b) Wi Columns, Wi Trough <br> Lintel and HBP blocks | 5 kWh | 0.225 | $\mathbf{1 . 1 2 5}$ |
| Note 1: Data point from https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023 |  |  |  |

### 3.2 Calculation

The Module A1-A5 embodied carbon is calculated based on Eq.(1).

### 3.3 Results

The total embodied carbon results for Type 1 panels are given in Table 14. One unit is one $9 \times 4 \mathrm{~m}$ panel, inclusive of the materials given in Table 1 for TWPs and Table 2 for the Wi System. The top two contributors to $\mathrm{EC}_{\mathrm{A} 15}$ for each are also shown in Figure 4.

Table 14: EC A $_{15}$ for Type 1 panel with a) TWPs, concrete lintel and standard blocks and b) Wi Columns, Wi Trough Lintel and HBP blocks.

|  | $\mathrm{EC}_{\text {A15 }}$ | - |
| :---: | :---: | :---: |
| (a) TWPs, concrete lintel and standard blocks | $1720 \mathrm{kgCO}_{2} \mathrm{e}$ per unit Range: 1584 - $2041 \mathrm{kgCO}_{2}$ e per unit | Range based on upper and lower values for $E C F_{A 13}$ for stainless steel. |
| (b) Wi Columns, Wi Trough Lintel and HBP blocks | $930 \mathrm{kgCO}_{2} \mathrm{e}$ per unit <br> Range: 926-939 kgCO 2 e per unit | 46\% reduction compared to TWP <br> Range based on upper and lower values for $E$ CF $_{A 13}$ for stainless steel. |

TWPs, concrete lintel, and standard blocks $1720 \mathrm{kgCO}_{2} \mathrm{e}$


Wi Columns, Wi Trough Lintel, and HBP blocks $930 \mathrm{kgCO}_{2} \mathrm{e}$

Figure 4: EC A $_{\text {15 }}$ results for a) TWPs, concrete lintel and standard blocks (left) and b) Wi Columns, Wi Trough Lintel and HBP blocks (right) showing top two contributors to $E C_{A 15}$.

As can be seen in the results presented above, the Wi Columns, Wi Trough Lintels and HBP block panel achieves a $46 \%$ carbon saving compared with the TWPs, concrete lintels and standard blocks panel.

## 4 Embodied carbon calculation: Type 2

### 4.1 Inputs

### 4.1.1 Material quantities

### 4.1.1.1 Type 2 blockwork wall panel ( $4 \times 5 \mathrm{~m}$ ) with TWPs, concrete lintel and standard blocks

Material quantities are taken from a bill of quantities provided by Wembley Innovation Ltd and are given in Table 15. One unit is one $4 \times 5 \mathrm{~m}$ panel, as shown in Figure 5.


Figure 5: Type 2 wall panel designed with TWPs and standard blocks and concrete lintel. Source: Wembley Innovation.

Table 15: Material quantities for Type 2 panel with TWPs, concrete lintel and standard blocks.

|  | A |  | B | C | G |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 1. | $130 \times 70 \times 6 \mathrm{~mm}$ stainless steel | Stainless steel | 3 nr | $15 \mathrm{~m}(5 \mathrm{~m}$ per TWP) | $\mathbf{1 4 4}$ |
| 2. | Bottom cleat (150x150x6mm) | Stainless steel | 3 nr | 1 nr cleat per WP | $\mathbf{3 . 2 4}$ |
| 3. | Top Cleat (220x70x6mm) | Stainless steel | 3 nr | 1 nr cleat per WP | $\mathbf{2 . 2 2}$ |
| 4. | Fireboard (100x15mm) | Plasterboard | 15 m | Fireboard to exposed TWP | $\mathbf{2 9 . 3 6}$ |
| 5. | Standard 140 mm 7.3 N medium <br> dense solid block | Medium dense <br> solid block | 198 nr | Weight = $19 \mathrm{~kg} /$ block | $\mathbf{3 7 6 2}$ |
| 6. | Standard mortar 1:1:6 | Mortar | $0.165 \mathrm{~m}^{3}$ | 10 mm thick mortar, 2200kg/m ${ }^{3}$ | $\mathbf{3 6 3}$ |
| 7. | 200x20x2.5 frame cramp ties <br> @450c/c spacing | Stainless steel | 88 nr | Both sides of TWP and at end <br> abutments | $\mathbf{7 . 0 4}$ |
| 8. | Stone mineral wool | Stone mineral <br> wool | 40 m | Filler material either side of each TWP <br> \& abutment. | $\mathbf{4 4}$ |
| 9. | 310ml intumescent acoustic <br> sealant | Sealant | 32 nr <br> tubes |  <br> abutments, both sides of wall panel. | $\mathbf{1 5 . 6 7}$ |


|  | A |  | B | C | G |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 10. | Precast concrete lintel | Precast <br> concrete lintel | 1 nr | $140 \mathrm{~mm} \times 215 \mathrm{~mm} \times 750 \mathrm{~mm}$ length, <br> $2500 \mathrm{~kg} / \mathrm{m}^{3}$ | $\mathbf{5 6 . 4 4}$ |

### 4.1.1.2 Type 2 blockwork wall panel ( $4 x 5 m$ ) with Wi Beam and HBP blocks

Material quantities are taken from a bill of quantities provided by Wembley Innovation Ltd and are given in Table 16. One unit is one $4 \times 5 \mathrm{~m}$ panel, as shown in Figure 6.


Figure 6: Type 2 wall panel designed with Wi Beam and HBP blocks. Source: Wembley Innovation.
Table 16: Material quantities for Type 2 panel with Wi Beam and HBP blocks.

|  | A |  | B | C | G |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 1. | 140mm Wi Beam Blocks | Wi System Blocks | 9 nr | Wi block $12.4 \mathrm{~kg} / \mathrm{block}$ | 111.6 |
| 2. | End cleats (200x60x8) | Mild steel | 2 nr | Both ends of WiB | 1.49 |
| 3. | 200x20x2.5 Frame Cramp ties @ 450c/c spacing | Stainless steel | 22 nr | at end abutments | 13.2 |
| 4. | Long transfer rod (675x34x4mm) | Mild steel | 5 nr | 0.712 kg each | 3.56 |
| 5. | H16 rebar no socket | Rebar | 8 m | 2 nr at 4 m length, $1.58 \mathrm{~kg} / \mathrm{m}$ | 12.64 |
| 6. | C40 Wi mortar | Mortar | 92 kg | $4 \mathrm{~m} \times 23 \mathrm{~kg} / \mathrm{m}$ | 92 |
| 7. | HBP 140 mm 7.3 N medium dense slot block | HBP 140 mm 7.3 N medium dense slot block | 189nr | HBP slot block weight $=17.8 \mathrm{~kg} / \mathrm{block}$ | 3364.2 |
| 8. | Standard mortar (1:1:6) | Mortar | $0.160 \mathrm{~m}^{3}$ | 10 mm thick mortar, $2200 \mathrm{~kg} / \mathrm{m}^{3}$ | 352 |
| 9. | Stone mineral wool | Stone mineral wool | 10m | At end abutments | 13.2 |


|  | A |  | B | C | G |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Material | Type | Quantity | Description | (kg/unit) |
| 10. | 310 ml intumescent acoustic <br> sealant | Sealant | 10 nr <br> tubes | Mastic to end abutments both sides of <br> wall panel | $\mathbf{4 . 9}$ |
| 11. | Wi debonding sleeve | Plastic | 4 nr | 2nr per end cleat | $\mathbf{0 . 1 1 6}$ |

### 4.1.2 Carbon factors

### 4.1.2.1 Modules A1-A3

### 4.1.2.1.1 Type 2 blockwork wall panel with TWPs, concrete lintel and standard blocks

Table 17: ECF A13 for Type 2 TWP

| Material | ECF $_{\text {A13 }}$ <br> $\left(\mathbf{k g C O}_{2} \mathbf{e} / \mathbf{k g}\right)$ | Source | Comment |
| :--- | :--- | :--- | :--- |
| Stainless steel | $\mathbf{4 . 4 0 7}$ <br> $($ Range 3.61 - <br> $6.29)$ | ICE V3 | Inventory of Carbon and Energy (ICE) database Average value for <br> stainless steel. |
| Fireboard | $\mathbf{0 . 3 9 0}$ | ICE V3 | Plasterboard |
| 7.3N Medium Block | $\mathbf{0 . 0 9 3}$ | ICE V3 | Medium density block (generic) |
| Standard mortar 1:1:6 | $\mathbf{0 . 1 5 2}$ | ICE V3 | Mortar (1:1:6 Cement:Lime:Sand mix) |
| Stone mineral wool | $\mathbf{1 . 2 8 0}$ | ICE V3 | Mineral Wool |
| Sealant | $\mathbf{2 . 3 6 6}$ | HTCEC | This value is general use for intumescent paint coatings of <br> concrete from HTCEC. |
| Precast Concrete Lintel | $\mathbf{0 . 1 9 4}$ | ICE V3 | Precast concrete beams and columns, assume 100kg steel per m <br> concrete, European EAF recycled stock. <br> For reference and context of this value, an EPD for a UK produced |
| prestressed precast lintel was found by Naylor Concrete (2023) |  |  |  |
| which has an A1-A3 carbon factor of 0.168 kgCO2e/kg. The value |  |  |  |
| adopted here can be updated if a specific product EPD is known to |  |  |  |
| be used. |  |  |  |

### 4.1.2.1.2 Type 2 blockwork wall panel with Wi Beam and HBP blocks

Table 18: $E C F_{\text {A13 }}$ for Type 2 Wi Beam

| Material | ECF $_{\text {A13 }}$ <br> $\left(\mathbf{k g C O}_{2} \mathbf{e} / \mathrm{kg}\right)$ | Source | Comment |
| :--- | :--- | :--- | :--- |
| 140 mm Wi Beam <br> Blocks $^{1}$ | $\mathbf{0 . 0 9 1 7}$ |  | Provided by Wembley Innovation. |
| Stainless steel | 4.407 <br> Range 3.61 - <br> $6.29)$ | ICE V3 | Inventory of Carbon and Energy (ICE) database Average value for <br> stainless steel. |
| Mild steel | $\mathbf{2 . 4 5 0}$ | HTCEC | This value is for general UK plate, and is recommended here <br> unless the source of the plate is known. |
| Reinforcing bar | $\mathbf{0 . 7 6 0}$ | HTCEC | UK sector average. |
| C40 Wi mortar | $\mathbf{0 . 1 7 8}$ |  | Provided by Wembley Innovation. |


| Material | ECF $_{\text {A13 }}$ <br> $\left(\mathbf{k g C O}_{2} \mathbf{e} / \mathbf{k g}\right)$ | Source | Comment |
| :--- | :--- | :--- | :--- |
| HBP 140mm 7.3N <br> medium dense slot <br> block $^{1}$ | $\mathbf{0 . 0 9 3}$ | ICE v3 | Medium density block (generic) |
| Standard mortar (1:1:6) | $\mathbf{0 . 1 5 2}$ | ICE V3 | Mortar (1:1:6 Cement:Lime:Sand mix) |
| Stone mineral wool | $\mathbf{1 . 2 8 0}$ | ICE V3 | Mineral Wool |
| 310ml intumescent <br> acoustic sealant | $\mathbf{2 . 3 6 6}$ | HTCEC | This value is general use for intumescent paint coatings of <br> concrete from HTCEC. |
| Plastic | $\mathbf{3 . 3 1 0}$ | ICE V2 | General plastics. |

### 4.1.2.2 Module A4

Module A4 is calculated in the same way as described for Type 1 panels in §3.1.2.2.

### 4.1.2.2.1 Type 2 blockwork wall panel TWPs, concrete lintel and standard blocks

The Type 2 blockwork panel with TWPs, concrete lintel, and standard blocks has an area of $20 \mathrm{~m}^{2}$, and using a carbon factor of $1.62 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{m}^{2}$ from Table 5 this gives a total $\mathrm{EC}_{\mathrm{A} 4}$ of $32.5 \mathrm{kgCO}_{2} \mathrm{e}$.

### 4.1.2.2.2 Type 2 blockwork wall panel Wi Beam with HBP blocks

The Type 2 blockwork panel with Wi Beam with HBP blocks has an area of $20 \mathrm{~m}^{2}$, and using a carbon factor of $1.29 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{m}^{2}$ from Table 5 this gives a total $\mathrm{EC}_{\mathrm{A} 4}$ of $25.8 \mathrm{kgCO}_{2} \mathrm{e}$.

### 4.1.2.3 Module A5w carbon factors

A5 carbon factors are divided into A5a (activities on site) and A5w (material wastage). Module A5w is calculated using Eq.(5):

$$
\begin{equation*}
E C F_{A 5 w, i}=W F_{i} \times\left(E C F_{A 13, i}+E C F_{A 4, i}+E C F_{C 2, i}+E C F_{C 34, i}\right) \tag{5}
\end{equation*}
$$

$\mathrm{ECF}_{\mathrm{A} 5 w, \mathrm{i}}=$ construction waste embodied carbon factor for $i^{\text {th }}$ material
$W F_{i}=$ waste factor for $t^{\text {th }}$ material
$E C F_{\text {A13,i }}=$ embodied carbon factor for A1-A3 for $i^{\text {th }}$ material
$\mathrm{ECF}_{\mathrm{A} 4, \mathrm{i}}=$ embodied carbon factor for transport to site for $t^{\text {th }}$ delivery
$\mathrm{ECF}_{\mathrm{C2}, \mathrm{i}}=$ transportation away from site carbon factor calculated in the same way as $\mathrm{ECF}_{\mathrm{A} 4, \text {, }}$ but transport distance is assumed to be 50 km by road if taken for reuse or recycling elsewhere (default assumption from RICS guidance)
ECF $_{\text {c34,i }}=$ waste processing and disposal embodied carbon factor
To calculate Module A5w, Module C2, C3, and C4 are also required:

- For Module A4, delivery emissions $\left(E^{A 4}\right)$ are distributed pro-rata by weight between the items in each delivery group and divided by the item weight to give $\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}$.
- For Module C2, transport distances are assumed at 50km (local) by road and calculated in the same manner as §3.1.2.3.1.
- Modules C3 and C4 are combined in a standard value of ECF ${ }_{C 34,1}=0.013 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}$ waste (as taken from the HTCEC guide).


### 4.1.2.3.1 Type 2 blockwork wall panel with TWPs, concrete lintel and standard blocks

Waste rates for each material are required. The waste rate (WR) is defined as a percentage of the quantity of materials brought to the site that are wasted. The values below are taken from baseline values provided in the WRAP Net Waste Tool, HTCEC or from discussions with Wembley Innovation:

Table 19: WF for Type 2 with TWPs, concrete lintel and standard blocks

| Material | WR | WF | Reference |
| :--- | :--- | :--- | :--- |
| Stainless steel | $1.00 \%$ | 0.010 | HTCEC |
| Fireboard (100x15mm) | $22.50 \%$ | 0.290 | HTCEC |
| Standard 140mm 7.3N medium dense solid block ${ }^{(1)}$ | $5.00 \%$ | 0.053 | WI |
| Standard mortar 1:1:6 | $5.00 \%$ | 0.053 | HTCEC |
| Stone mineral wool ${ }^{(1)}$ | $5.00 \%$ | 0.053 | WI |
| 310ml intumescent acoustic sealant ${ }^{(1)}$ | $3.00 \%$ | 0.031 | WI |
| Precast concrete lintel ${ }^{(2)}$ | $0.00 \%$ | 0.000 | WI |

Note 1: WR value based on site experience and discussion with Wembley Innovation.
Note 2: Precast concrete large elements would have a WR of $1 \%$ in HTCEC, $0 \%$ is taken here for these small elements.

Table 20: ECF ${ }_{C 2}$ for TWP

| TD $_{\text {mode }}$ | TEF mode | Mode | ECFc2 |
| :--- | :--- | :--- | :--- |
| $50^{(1)}$ | 0.00009696 | Road | 0.004848 |

Note 1: ECF ${ }_{C 2}$ is the transportation away from site carbon factor. This is calculated as described in §3.1.2.3.1 with transport distance is assumed to be 50 km by road if taken for reuse or recycling elsewhere (default assumption from RICS guidance).

Table 21: A5w for Type 2 panel with TWPs, concrete lintel and standard blocks

| Material | $\mathrm{ECFF}_{\text {A13 }}$ | $E C F_{\text {A4 }}$ | ECF ${ }_{\text {c }}$ | ECFc34 | WF | $\mathrm{ECF}_{\text {A5w }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stainless steel | 4.407 | 0.0064 | 0.0048 | 0.013 | 0.010 | 0.045 |
| Fireboard | 0.390 | 0.0065 | 0.0048 | 0.013 | 0.290 | 0.120 |
| Standard 140 mm 7.3 N medium dense solid block | 0.093 | 0.0068 | 0.0048 | 0.013 | 0.053 | 0.006 |
| Standard mortar 1:1:6 | 0.152 | 0.0005 | 0.0048 | 0.013 | 0.053 | 0.009 |
| Stone mineral wool | 1.280 | 0.0014 | 0.0048 | 0.013 | 0.053 | 0.068 |
| 310ml intumescent acoustic sealant | 2.366 | 0.0014 | 0.0048 | 0.013 | 0.031 | 0.074 |
| Precast concrete lintel | 0.194 | 0.0938 | 0.0048 | 0.013 | 0.000 | 0.000 |

### 4.1.2.3.2 Type 2 blockwork wall panel with Wi Beam and HBP blocks

Waste rates for each material are required. The waste rate (WR) is defined as a percentage of the quantity of materials brought to the site that are wasted.

Table 22: WF for Type 2 panel with Wi Beam and HBP blocks

| Material | WRwi | WFwi | Reference |
| :--- | :--- | :--- | :--- |
| Wi Beam Blocks | $5.00 \%$ | 0.053 | WI |
| Stainless steel | $1.00 \%$ | 0.010 | HTCEC |
| Mild Steel | $1.00 \%$ | 0.010 | HTCEC |
| Rebar | $1.00 \%$ | 0.010 | WI |
| C40 Wi mortar | $5.00 \%$ | 0.053 | HTCEC |
| HBP 140mm 7.3N medium dense slot block | $5.00 \%$ | 0.053 | WI |
| Standard mortar (1:1:6) | $5.00 \%$ | 0.053 | HTCEC |
| Stone mineral wool | $5.00 \%$ | 0.053 | Wrap |
| 310ml intumescent acoustic sealant | $1.00 \%$ | 0.031 | WI |
| Plastic |  | WI |  |

Table 23: ECF ${ }_{C 2}$ for Type 2 Wi Beam system

| TD $_{\text {mode }}$ | TEF $_{\text {mode }}$ | Mode | ECFc2 $^{(1)}$ |
| :--- | :--- | :--- | :--- |
| $50^{(1)}$ | 0.00009696 | Road | 0.004848 |

Note 1: $\mathrm{ECF}_{\mathrm{C} 2}$ is the transportation away from site carbon factor. This is calculated in the same way as ECF $\mathrm{A}_{4}$ but transport distance is assumed to be 50 km by road if taken for reuse or recycling elsewhere (default assumption from RICS guidance).

Table 24: A5w for Type 2 panel with Wi Beam and HBP blocks

| Material | $\mathrm{ECF}_{\text {A13 }}$ | $E C F F_{\text {A }}$ | $\mathrm{ECF}_{62}$ | ECF\% 34 | WFwi | $\mathrm{ECF}_{\text {A5w }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 140mm Wi Beam Blocks | 0.0917 | 0.0071 | 0.0048 | 0.0130 | 0.053 | 0.0061 |
| Stainless steel | 4.407 | 0.0027 | 0.0048 | 0.013 | 0.010 | 0.0447 |
| Mild Steel | 2.450 | 0.0062 | 0.0048 | 0.0130 | 0.010 | 0.0250 |
| H16 rebar with socket | 0.76 | 0.0062 | 0.0048 | 0.0130 | 0.010 | 0.0079 |
| C40 Wi mortar | 0.178 | 0.0062 | 0.0048 | 0.013 | 0.053 | 0.0106 |
| HBP 140mm 7.3N medium dense slot block | 0.093 | 0.0071 | 0.0048 | 0.013 | 0.053 | 0.0062 |
| Standard mortar $(1: 1: 6)$ | 0.152 | 0.0005 | 0.0048 | 0.013 | 0.053 | 0.0090 |
| Stone mineral wool | 1.280 | 0.0027 | 0.0048 | 0.013 | 0.053 | 0.0685 |
| 310 ml intumescent acoustic sealant | 2.366 | 0.0027 | 0.0048 | 0.013 | 0.031 | 0.0738 |
| Plastic | 3.310 | 0.0027 | 0.0048 | 0.013 | 0.010 | 0.0336 |

### 4.1.3 Module A5a carbon emissions

In the following, electricity use required for site activities is taken from data provided by Wembley Innovation and given in Table 25.

The carbon emissions factor for this report have been taken from the UK Government Greenhouse gas reporting: conversion factors 2023. The values for electricity generation (Scope 2) and transmission and distribution (Scope 3) are added together to provide a 'electricity consumption' carbon factor, in line with the guidance provided with the conversion factors. This gives an emission factor of 0.207074 (for electricity generation) plus 0.01792 (for transmission and distribution) $=0.225 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kWh}$.

Table 25: A5a emissions for Type 2 panel with a) TWPs, concrete lintel and standard blocks and b) with Wi Beam and HBP blocks, per $4 \times 5 m$ unit.

|  | Grid electricity | Carbon emission factor <br> $\left(\mathbf{k g C O}_{2} \mathbf{e} / \mathbf{k W h}\right)^{1}$ | Embodied carbon <br> $\mathbf{( k g C O}_{\mathbf{2}} \mathbf{)}$ |
| :--- | :--- | :--- | :--- |
| (a) TWPs, concrete lintel <br> and standard blocks | 10 kWh | 0.225 | $\mathbf{2 . 2 5 0}$ |
| (b) Wi Beam and HBP <br> blocks | 5 kWh | 0.225 | $\mathbf{1 . 1 2 5}$ |
| Note 1: Data point from https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023 |  |  |  |

### 4.2 Calculation

The Module A1-A5 embodied carbon is calculated based on Eq.(1).

### 4.3 Results

The total embodied carbon results for Type 2 panels are given in Table 26. One unit is one $4 \times 5 \mathrm{~m}$ panel, inclusive of the materials given in Table 15 for TWPs and Table 16 for the Wi Beam panel. The top contributors to $\mathrm{EC}_{\mathrm{A} 15}$ for each are also shown in Figure 7.

Table 26: EC $C_{A 15}$ for Type 2 panel with a) TWPs, concrete lintel and standard blocks and b) with Wi Beam and HBP blocks.

|  | $\mathrm{EC}_{\mathrm{A} 15}$ | - |
| :--- | :--- | :--- |
| (a) TWPs, concrete lintel and standard <br> blocks | $1287 \mathrm{kgCO}_{2} \mathrm{e}$ per unit <br> Range: $1160-1584 \mathrm{kgCO}_{2}$ e per unit | Range based on upper and lower <br> values for $E C F_{A 13}$ for stainless steel. |
| (b) Wi Beam and HBP blocks | $557 \mathrm{kgCO}_{2} \mathrm{e}$ per unit <br> Range: $546-582 \mathrm{kgCO}_{2} \mathrm{e}$ per unit | $57 \%$ reduction compared to TWP <br> Range based on upper and lower <br> values for $E C F_{A 13}$ for stainless steel. |

TWPs, concrete lintel and standard blocks $1287 \mathrm{kgCO}_{2} \mathrm{e}$


Wi Beam and HBP blocks $557 \mathrm{kgCO}_{2} \mathrm{e}$


Figure 7: EC A15 results for Type 2 panel with a) TWPs, concrete lintel and standard blocks (left) and b) with Wi Beam and HBP blocks (right) showing top contributors to EC A15 .

As can be seen in the results presented above, the Wi Beam and HBP blocks panel achieves a $57 \%$ carbon saving compared with the TWPs, concrete lintel and standard blocks panel.

## 5 Analysis and Discussion

### 5.1 Electricity supply

The HBP factory has been installed with solar panels producing 328 kWp (kW peak). The provided information estimates an output of the installation over 20 years of 4,338,026 kWh. Averaging this over the 20-year period (balancing out the linear degradation in performance assumed in the solar proposal), this equates to approximately 600 kWh per day.

HBP consumed on average 208 kWh electricity per day in 2022. If this is taken as a representative year, the installed system should supply close to 400 kWh of renewable electricity to the grid every day for 20 years - about 2.9 MWh in total of new renewable energy source supplied to the grid.

The carbon emissions of the electricity consumed by the HBP factory prior to installation of the solar panels can be estimated from the electricity production plus transmission and distribution (total of $0.225 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kWh}$ ) ${ }^{1}$, which amounts to approximately $46.8 \mathrm{kgCO}_{2} \mathrm{e}$ emissions per day for the plant. This is an underestimate, since the grid factors include generation by renewables, where it could be argued that the installation is replacing nonrenewables in the energy mix.

HBP produces between 12,000 and 14,000 blocks per day. If we assume an average of 13,000 blocks, the installation negates the need for any UK grid electricity. $46.8 \mathrm{kgCO}_{2} \mathrm{e}$ divided equally amongst the blocks (for simplicity) amounts to $3.6 \mathrm{gCO}_{2} \mathrm{e}$ per block. This is small compared to the embodied carbon of the block - the Wi column and Wi beam blocks have an A1-A3 embodied carbon of $0.0917 \mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}$ (and weigh $11.4-12.4 \mathrm{~kg}$ each).

Overall, the solar installation is an extremely positive addition in terms of sustainability as it means the HBP factory is entirely self-sufficient in electricity supply and is also a net contributor to the grid of clean renewable electricity, for at least the next 20 years.

[^1]
### 5.2 Comparison between Wi System and TWP - Type 1

TWPs, concrete lintel, and standard blocks $1720 \mathrm{kgCO}_{2} \mathrm{e}$

Wi Columns, Wi Trough Lintel, and HBP blocks $930 \mathrm{kgCO}_{2} \mathrm{e}$



A1-A3: 89\%

Figure 8: Split in embodied carbon by life cycle Module.

### 5.2.1 Raw materials

Both systems are dominated by Module A1-A3 carbon.
As can be seen in the results presented above, the Wi Columns, Wi Trough Lintels and HBP block panel achieves at least a $46 \%$ carbon saving compared with the TWPs, concrete lintels and standard blocks panel.
The Wi System uses considerably less stainless steel than the TWP (168kg, 44\% of the total embodied carbon for TWP, compared to $5 \mathrm{~kg}, 2 \%$ of total embodied carbon for Wi System). The Wi System uses slightly less blockwork ( 6161 kg compared to 6802kg for the TWP). The Wi System does not require fire boarding, which saves a small amount of carbon compared to the TWP.

Future changes to the design could therefore focus on the emission reduction hierarchy shown in Figure 9, which reminds us the most important thing we can do now is to use less stuff.


Figure 9: Hierarchy of emissions reductions. Image © John Orr (Orr et al., 2021)

### 5.2.2 Transportation

The Wi Columns, Wi Trough Lintel, and HBP blocks have lower A4 emissions ( $46 \mathrm{kgCO}_{2} \mathrm{e}$ compared to $58 \mathrm{kgCO}_{2} \mathrm{e}$ for TWPs, concrete lintel, and standard blocks).

This report has based the transportation carbon on a real project, which allowed the analysis of actual transport logistics to be included. This is a more robust analysis than simply using the crude metric of $\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg} / \mathrm{km}$. The Wi System has approximately $20 \%$ fewer deliveries required, meaning less trucks on the road which brings additional benefits, for example in lower air pollution emissions and road traffic around construction sites.

### 5.2.3 Waste

Module A5w contributes a small percentage of the total carbon. The waste rates have been applied equally to both systems. Further improvements in site practice could allow these to be reduced.

### 5.2.4 Site activities

Site activity data has been estimated in kWh by the Wembley Innovation team. The total contribution in both is very small.

### 5.3 Comparison between Wi System and TWP - Type 2

## TWPs, concrete lintel and standard blocks $1287 \mathrm{kgCO}_{2} \mathrm{e}$

Wi Beam and HBP blocks $557 \mathrm{kgCO}_{2} \mathrm{e}$

A5a: 0.17\%


A5a: 0.20\%


A1-A3: 90\%

Figure 10: Split in embodied carbon by life cycle Module.

### 5.3.1 Raw materials

Both systems are dominated by Module A1-A3 carbon.
As can be seen in the results presented above, the Wi Beam and HBP blocks panel achieves at least a $57 \%$ carbon saving compared with the TWPs, concrete lintel and standard blocks panel.

The Wi System uses considerably less stainless steel than the TWP (157kg, 54\% of the total embodied carbon for TWP, compared to $13 \mathrm{~kg}, 11 \%$ of total embodied carbon for Wi System). The Wi System uses slightly less blockwork (3476kg compared to 3762 kg for the TWP). The Wi System does not require fire boarding, which saves a small amount of carbon compared to the TWP.

### 5.3.2 Transportation

The Wi System has a lower A4 emissions ( $26 \mathrm{kgCO}_{2} \mathrm{e}$ compared to $32 \mathrm{kgCO}_{2} \mathrm{e}$ for TWP). Further benefits of the Wi System that result from fewer deliveries are outlined in §5.2.2 above.

### 5.3.3 Waste

Module A5w contributes a small percentage of the total carbon. The waste rates have been applied equally to both systems. Further improvements in site practice could allow these to be reduced.

### 5.3.4 Site activities

Site activity data has been estimated in kWh by the Wembley Innovation team. The total contribution in both is very small. Further analysis could be undertaken to validate the assumptions made.

## References

BSI 2011. BS EN 15978. Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method. London: BSI.

DEPARTMENT FOR ENERGY SECURITY AND NET ZERO. 2023. Greenhouse gas reporting: conversion factors 2023 [Online]. London: HMG. Available: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors$\underline{2023}$ [Accessed August 2023].

ISTRUCTE. 2022. How to Calculate Embodied Carbon [Online]. London: IStructE. Available: http://carbon.tips/h2c [Accessed August 2023].

JONES, C. 2019. Inventory of Carbon and Energy Carbon Database V3. http://www.circularecology.com.

NAYLOR CONCRETE. 2023. Naylor XtraFire Prestressed Concrete Lintels Environmental Product Declaration (EPD) [Online]. Barnsley: Naylor Concrete Products Limited. Available: https://www.naylorconcrete.co.uk/site/assets/files/4433/epd naylor xtrafire lintels.pdf [Accessed August 2023].

ORR, J., COOKE, M., IBELL, P. T., SMITH, C. \& WATSON, N. 2021. Design for Zero [Online]. London: IStructE. Available: http://carbon.tips/dfz [Accessed August 2023].

WRAP. 2008. Net Waste Tool [Online]. Available: https://carbon.tips/nwtool [Accessed May 2023].


[^0]:    for
    Wembley Innovation Ltd - Haughley Block Plant Ltd

[^1]:    ${ }^{1}$ From https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023

